DAVID HILBERT (1862–1943)
DAVID HILBERT (1862–1943) Hilbert, born in Königsberg, the city famous in mathematics for its seven
bridges, was the son of a judge. During his tenure at Göttingen University, from 1892 to 1930, he made many
fundamental contributions to a wide range of mathematical subjects. He almost always worked on one area of
mathematics at a time, making important contributions, then moving to a new mathematical subject. Some areas
in which Hilbert worked are the calculus of variations, geometry, algebra, number theory, logic, and mathematical
physics. Besides his many outstanding original contributions, Hilbert is remembered for his famous list of 23
difficult problems. He described these problems at the 1900 International Congress of Mathematicians, as a
challenge to mathematicians at the birth of the twentieth century. Since that time, they have spurred a tremendous
amount and variety of research. Although many of these problems have now been solved, several remain open,
including the Riemann hypothesis, which is part of Problem 8 on Hilbert’s list. Hilbert was also the author of several important
textbooks in number theory and geometry
bridges, was the son of a judge. During his tenure at Göttingen University, from 1892 to 1930, he made many
fundamental contributions to a wide range of mathematical subjects. He almost always worked on one area of
mathematics at a time, making important contributions, then moving to a new mathematical subject. Some areas
in which Hilbert worked are the calculus of variations, geometry, algebra, number theory, logic, and mathematical
physics. Besides his many outstanding original contributions, Hilbert is remembered for his famous list of 23
difficult problems. He described these problems at the 1900 International Congress of Mathematicians, as a
challenge to mathematicians at the birth of the twentieth century. Since that time, they have spurred a tremendous
amount and variety of research. Although many of these problems have now been solved, several remain open,
including the Riemann hypothesis, which is part of Problem 8 on Hilbert’s list. Hilbert was also the author of several important
textbooks in number theory and geometry
No comments